UV gated Raman spectroscopy for standoff detection of explosives

نویسندگان

  • M. Gaft
  • L. Nagli
چکیده

Real-time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called improvised explosive devices (IED). It is recognized that the only method, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS technique belongs to trace detection, namely to its micro-particles variety. It is based on commonly held belief that surface contamination was very difficult to avoid and could be exploited for standoff detection. We have applied gated Raman spectroscopy for detection of main explosive materials, both factory and homemade. We developed and tested a Raman system for the field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 m. 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep ultraviolet resonance Raman excitation enables explosives detection.

We measured the 229 nm absolute ultraviolet (UV) Raman cross-sections of the explosives trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotrimethylene-trinitramine (RDX), the chemically related nitroamine explosive HMX, and ammonium nitrate in solution. The 229 nm Raman cross-sections are 1000-fold greater than those excited in the near-infrared and visible spectral regions. Deep...

متن کامل

Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument.

We have designed and demonstrated a standoff Raman system for detecting high explosive materials at distances up to 50 meters in ambient light conditions. In the system, light is collected using an 8-in. Schmidt-Cassegrain telescope fiber-coupled to an f/1.8 spectrograph with a gated intensified charge-coupled device (ICCD) detector. A frequency-doubled Nd : YAG (532 nm) pulsed (10 Hz) laser is...

متن کامل

Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.

We constructed the first deep ultraviolet (UV) Raman standoff wide-field imaging spectrometer. Our novel deep UV imaging spectrometer utilizes a photonic crystal to select Raman spectral regions for detection. The photonic crystal is composed of highly charged, monodisperse 35.5 ± 2.9 nm silica nanoparticles that self-assemble in solution to produce a face centered cubic crystalline colloidal a...

متن کامل

A New Standoff Cb Detection Technology Based on the Fusion of Libs and Raman

Both standoff Laser Induced Breakdown Spectroscopy (LIBS) and Raman technologies have recently made great strides towards being deployed for operational use. Both technologies have demonstrated impressive capabilities of detection and discrimination of residue amounts of explosives at distances of 50+ meters in recent tests at the National Training Center, Ft. Irwin, CA, and Yuma Proving Ground...

متن کامل

R3-C: Standoff Detection of Explosives: Mid-Infrared Spectroscopy Chemical Sensing

The main objective of the ALERT Phase 2 R3-C component is to develop Vibrational Spectroscopy for photonic standoff detection of highly energetic materials (HEMs): explosives and homemade explosives (HMEs). The expected outcomes of the project are to signifi cantly improve the current state of development of vibrational standoff detection of HEMs/HMEs, in terms of: range (target-observer distan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008